Лекция 1. Введение в курс ботаники. Разделы ботаники. Значение растений. Растение как целостный организм

Задача нашего небольшого курса ботаники - кратко ознакомить студентов со строением и многообразием растений. Специалистам по садово-парковому строительству, ландшафтным архитекторам необходимы эти знания для правильного использования растений при оформлении искусственных ландшафтов. А именно требуется знание биологии растений, требований к условиям их обитания, чтобы грамотно разместить их, создать для них необходимые условия (состав почвы, освещение), обеспечить соответствующий уход. При таком подходе растения отблагодарят людей своим красивым и здоровым внешним видом, быстрым ростом, обильным цветением.

Ботаника, как наука, сформировалась более 2000 лет назад. Основоположниками ее были выдающиеся деятели древнего мира Аристотель (384-322 гг. до н. э.) и Теофраст (371-286 гг. до н. э.). Они обобщили накопленные сведения о разнообразии растений и их свойствах, приемах возделывания, размножении и использовании, географическом распространении.

В наше время ботаника представляет собой многоотраслевую науку. Общая задача ее состоит в изучении отдельно взятых растений и их совокупностей - растительных сообществ. Ботаники изучают строение, развитие растений в онтогенезе, отношения растений с окружающей средой, закономерности распространения и распределения отдельных видов и всего растительного покрова на земном шаре; происхождение и эволюцию царства растений, его разнообразие и классификацию; запасы в природе хозяйственно ценных растений и пути их рационального использования, разрабатывают научные основы введения в культуру (интродукции) новых кормовых, лекарственных, плодовых, овощных, технических, декоративных растений.

Разделы ботаники. Ботанику как часть более общей науки - биологии, в свою очередь, подразделяют на ряд частных наук, в задачи которых входит изучение тех или иных закономерностей строения и жизни растений или растительного покрова.

Морфология - один из наиболее крупных и рано сформировавшихся разделов ботаники. Это наука о закономерностях возникновения и развития разнообразных жизненных форм растений и отдельных их органов. Заложение и развитие органов растения рассматривают и в ходе индивидуального развития отдельной особи от прорастания семени до конца жизни (онтогенез), и в ходе исторического развития (эволюции) всего вида или любой другой систематической группы, к которой относят данную особь (филогенез).

В процессе развития морфологии в ее недрах обособились еще более специализированные науки: цитология (закономерности строения и развития основной структурной единицы растений - клетки); гистология, или анатомия (заложение, развитие и строение разнообразных тканей, формирующих органы); эмбриология (закономерности развития и строения зародыша); органография (заложение, развитие и структура органов растения); палинология (строение пыльцы и спор).

Флорография. В задачу этой науки входит распознавание и описание видов. Виды, описанные флорографами, систематики распределяют в группы по признакам сходства, отражающим родство.

Систематика - наука о разнообразии видов и причинах этого разнообразия. Задача систематики - приведение в легко обозримую научную систему всех наших знаний о видах, описанных флорографами. На основании целой серии методов систематик объединяет родственные виды в систематические группы более высокого ранга - роды, семейства и т. д.

География растений (фитогеография) - крупнейший раздел ботаники, основная задача которого состоит в изучении закономерностей распространения и распределения растений и их сообществ (ценозов) на суше и в воде.

Экология. Жизнь растений зависит от окружающей среды (климата, почвы и др.), но и растения, в свою очередь, влияют на создание этой среды, принимая участие в почвообразовательном процессе, изменяя климат. Задача экологии - изучение строения и жизни растений в связи с окружающей средой. Эта наука имеет первостепенное значение для практического земледелия.

Физиология растений - наука о процессах жизнедеятельности растений, преимущественно об обмене веществ, движении, росте, ритмах развития, размножении и т. д.

Микробиология - наука об особенностях жизненных процессов, происходящих в микроскопических организмах, преобладающую часть которых составляют бактерии и некоторые грибы. Успехи почвенной микробиологии широко используют в сельскохозяйственной практике.

Палеоботаника - наука об ископаемых растениях прошлых геологических периодов.

Другие разделы ботаники настолько обособились в связи с решением специальных задач и применяемыми методами работы, что давно уже составляют особые науки, среди них биофизика, биохимия, радиобиология, генетика и др.

Значение растений в жизни нашей планеты огромно. Растения, аккумулируя солнечную энергию, превращают ее в энергию химических связей органических соединений, образуя органические вещества из неорганических. В процессе этого процесса - фотосинтеза - в атмосферу выделяется кислород. То есть именно зеленые растения создают пищу для всех живых организмов планеты, являются первым звеном в цепях питания, продуцентами в биоценозах. Атмосфера Земли, содержащая 21% кислорода и пригодная для дыхания живых существ, в большой степени создана растениями.

Растение как целостный организм. Все живые организмы построены из клеток. Одноклеточные (бактерии, простейшие, многие водоросли и грибы) состоят из одной клетки, многоклеточные (большинство растений и животных) - обычно из многих тысяч клеток.

Клетки растений сгруппированы в различные ткани (образовательные, покровные, проводящие, механические, основные, выделительные). Особенности строения клеток этих тканей позволяют им выполнять специфические функции: рост растения в высоту и толщину; защиту растения от испарения воды и механических воздействий; проведение воды, минеральных и органических веществ по растению; обеспечивают механическую прочность растения, синтез органических веществ, запасание веществ, выделение веществ. Ткани расположены в растении в виде различно устроенных комплексов и составляют органы растений: корень, стебель, лист, цветок. Каждый орган выполняет свою функцию: корень поглощает из земли воду с растворенными в ней минеральными веществами и проводит ее в стебель. Стебель выносит листья ближе к свету и благодаря системе ветвления располагает их наиболее эффективно для поглощения солнечной энергии. Кроме того, стебель проводит вверх и вниз по растению различные вещества: вверх из корня движется вода с растворенными в ней минеральными веществами; вниз - органические вещества (углеводы, обра зующиеся при фотосинтезе в листьях). Очень важна и уникальна в природе функция зеленого листа - там происходит фотосинтез - образование органических веществ (углеводов) из неорганических (углекислого газа воздуха и воды) с участием солнечного света и зеленого пигмента хлорофилла, содержащегося в зеленых листьях и побегах растений. В качестве побочного продукта в результате фотосинтеза в атмосферу выделяется кислород. С помощью листьев происходят еще два процесса: транспирация (испарение воды листьями) и дыхание растений (процесс окисления органических веществ с выделением энергии, внешними проявлениями которого является поглощение растением кислорода воздуха и выделение углекислого газа).

Вышеназванные органы растения обеспечивают повседневную жизнь (питание, дыхание, рост) растения и называются вегетативными. В определенные периоды жизни растения, обычно весной или летом, растение формирует генеративные или репродуктивные органы - цветок и плод, предназначенные для полового размножения растений, образования и распространения семян.

Изучение строения растений мы начнем с растительной клетки.

Цитология - наука о клетках. Методы изучения клеток. Клетка - это элементарная структурная и функциональная единица тела растений и животных, способная к воспроизведению. В клетках происходят сложные биохимические процессы синтеза и распада органических веществ, в результате которых строится тело растения и выделяется энергия для жизнедеятельности. Любой живой организм взаимодействует с окружающей средой, поглощая из нее какие-то вещества и выделяя в нее продукты своей жизнедеятельности. Этот процесс называется обменом веществ. В нем можно выделить два противоположно и параллельно идущих процесса: ассимиляцию (синтез или образование органических веществ) и диссимиляцию (распад органических веществ с выделением при этом энергии).

Клетка обладает всеми свойствами живой системы: она осуществляет обмен веществ и энергии, растет, размножается и передает по наследству свои признаки, реагирует на внешние сигналы (раздражители) и способна двигаться. Она является низшей ступенью организации, обладающей всеми этими свойствами, наименьшей структурной и функциональной единицей живого. Она может жить и отдельно -изолированные клетки многоклеточных организмов продолжают жить и размножаться в питательной среде.

Обмен веществ растений имеет свои уникальные особенности, что обусловлено строением и функционированием растительных клеток.

Первым увидел клетку английский естествоиспытатель (физик, астроном и ботаник) Роберт Гук при изучении покровной ткани бузины - пробки. Он усовершенствовал микроскоп, изобретенный Галилео Галилеем (итальянский математик, физик и астроном) в 1609 г. и использовал его для исследования тонких срезов растений. Свои наблюдения Р. Гук изложил в сочинении «Микрография», изданном в 1665 г., где он впервые применил термин «клетка». Однако в современном значении этот термин стали употреблять только через 150 лет. Поскольку пробка состоит из мертвых клеток, имеющих только стенки, возникло ошибочное представление о том, что со стенками клеток связаны основные жизненные функции клетки. Содержимому клеток придавали второстепенное значение «питательного сока» или «растительной слизи». Только в XIX в. содержимое клетки привлекло внимание исследователей. К этому времени были уже известны крахмальные зерна, кристаллы, хлоропласты и другие части клетки. Совершенствовалась микроскопическая техника, накапливался новый экспериментальный материал.

В 1833 г. английский ботаник Роберт Броун обнаружил ядро, в 1839 г. чешский физиолог и анатом Ян Пуркинье цитоплазму. Они же дали название этих компонентов клетки. Накопившиеся данные о клеточном строении растений и животных позволили немецким ученым - ботанику Маттиасу Шлейдену и зоологу Теодору Шванну - в 1838-1839 гг. сформулировать клеточную теорию, суть которой заключается в том, что клетка - это основная элементарная структурная единица всех живых организмов. Создание клеточной теории - значительный успех биологии, поскольку она подразумевает единство всех живых систем и объединяет различные направления биологии, изучающие разнообразные организмы.

В 1858 г. немецкий естествоиспытатель Рудольф Вирхов сделал общее заключение, что клетки могут появляться только от других клеток: «Где существует клетка, там должна быть и предшествующая клетка, точно так, как животное происходит только от животного, а растение только от растения... Над всеми живыми формами, будь то организмы животных или растений, или их составные части, господствует вечный закон непрерывного развития».

Концепция Вирхова с точки зрения эволюции приобретает еще большую значимость. Существует непрерывная связь между современными клетками и организмами, в состав которых они входят, и примитивными клетками, которые впервые появились на Земле по крайней мере 3,5 млрд лет назад.

Изучением строения клеток и их жизнедеятельности занимается наука цитология.

Методы, применяемые для изучения клеток, очень разнообразны. Большинство клеток можно увидеть только с помощью микроскопа, поэтому основной метод - микроскопический. При описании размеров клеток используют микрометры и нанометры (1 мкм = 0,001 мм; 1 нм = 0,001 мкм). Большую роль играет световой (фотонный) микроскоп, современные модели которого дают увеличение до 2 тыс. раз.

Однако возможности светового микроскопа ограничены, частицы менее 0,2 мкм рассмотреть при его помощи невозможно. Электронный микроскоп дает увеличение в 200-400 тыс. раз. Здесь вместо пучка света используют поток электронов, движущихся с высокой скоростью. Современные электронные микроскопы имеют разрешающую способность около 0,5 нм, примерно в 200 000 раз большую, чем человеческий глаз (диаметр атома водорода около 0,1 нм).

Существуют трансмиссионные (просвечивающие) и сканирующие электронные микроскопы.

В трансмиссионном (просвечивающем) микроскопе пучок электронов проходит через срез, раздвигается электромагнитными линзами и проецируется на экран, светящийся от ударов электронов, или на фотопластинку. При помощи электронного микроскопа можно рассмотреть частицы размером 1,5 нм. Изучаемые срезы должны иметь толщину не более 0,05 мкм и специальную окраску.

В сканирующем (растровом) электронном микроскопе электроны, которые регистрируются и преобразуются в изображение, идут от поверхности образца. Электронный пучок фокусируется в тонком зонде и им сканирует образец. В результате этого образец испускает вторичные электроны слабой энергии. Различные участки поверхности испускают неодинаковое количество вторичных электронов. Меньшее количество испускают углубления и борозды, и поэтому кажутся темными, большее - пики и выступы, которые выглядят светлыми. В результате получают трехмерное изображение. Электроны, отраженные поверхностью, и вторичные электроны собираются, усиливаются и передаются на экран.

Методом культуры тканей изучают структуру и жизнедеятельность живых клеток вне организма.

Цитохимический метод позволяет выявить наличие и определить количество различных веществ в клетке - белков, жиров, углеводов, нуклеиновых кислот, гормонов, витаминов и др.

Разделить компоненты клетки с различной плотностью для изолированного изучения их можно с помощью метода центрифугирования.

Извлечь из клетки отдельные компоненты (ядро, митохондрии и др.) позволяет метод микроскопической хирургии.

Лекция 2

 
Посмотреть оригинал
< Пред   СОДЕРЖАНИЕ   ОРИГИНАЛ   След >